Characteristics of New Stochastic Solitonic Solutions for the Chiral Type of Nonlinear Schrödinger Equation

نویسندگان

چکیده

The Wiener process was used to explore the (2 + 1)-dimensional chiral nonlinear Schrödinger equation (CNLSE). This model outlines energy characteristics of quantum physics’ fractional Hall effect edge states. sine-Gordon expansion technique (SGET) implemented extract stochastic solutions for CNLSE through multiplicative noise effects. method accurately described a variety solitary behaviors, including bright solitons, dark periodic envelopes, solitonic forms, and dissipative dissipative–soliton-like waves, showing how changed as values studied system’s physical parameters were changed. parameter shown affect damping, growth, conversion effects on (dark) envelope shock-forced oscillatory wave energy, amplitudes, frequencies. In addition, intensity resulted in enormous structures behaviors. proposed is applicable various equations applied sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Stochastic Acceleration of Solitons for the Nonlinear Schrödinger Equation

The effective dynamics of solitons for the generalized nonlinear Schrödinger equation in a random potential is rigorously studied. It is shown that when the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is almost surely described by Hamilton’s equations for a classical particle in the random potential, plus error terms d...

متن کامل

A semi-discrete scheme for the stochastic nonlinear Schrödinger equation

We study the convergence of a semi-discretized version of a numerical scheme for a stochastic nonlinear Schrödinger equation. The nonlinear term is a power law and the noise is multiplicative with a Stratonovich product. Our scheme is implicit in the deterministic part of the equation as is usual for conservative equations. We also use an implicit discretization of the noise which is better sui...

متن کامل

Direct search for exact solutions to the nonlinear Schrödinger equation

A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger equation, which, together with a reflection invariance, generates two five-parameter solution groups. Three ansätze of transformations are secondly analyzed and used to construct exact solutions to the nonlinear Schrödinger equation. Various examples of exact solutions with c...

متن کامل

Variational solutions for the discrete nonlinear Schrödinger equation

The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7060461